Co-delivery of HIV-1 entry inhibitor and NNRTI shuttled by nanoparticles: cocktail therapeutic strategy for antiviral therapy


Li W, Yu F, Wang Q, et al. Co-delivery of HIV-1 entry inhibitor and nonnucleoside reverse transcriptase inhibitor shuttled by nanoparticles: cocktail therapeutic strategy for antiviral therapy. AIDS. 2016;30(6):827-838. doi:10.1097/QAD.0000000000000971. PMID: 26595538.

Traditionally, the antiviral efficacy of classic cocktail therapy is significantly limited by the distinct pharmacokinetic profiles of partner therapeutics that lead to inconsistent in-vivo biodistribution. Here we developed a new cocktail-like drug delivery vehicle using biodegradable polymeric nanoparticles (NP) encapsulating nonnucleoside reverse transcriptase inhibitor (NNRTI) DAAN-14f (14f), surface-conjugated with HIV-1 fusion inhibitor T1144, designated T1144-NP-DAAN-14f (T1144-NP-14f), and aiming to achieve enhanced cellular uptake, improved antiviral activity and prolonged blood circulation time.

METHODS: T1144-NP-14f was prepared through the emulsion/solvent evaporation technique and a maleimide-thiol coupling reaction. Particle size and morphology were determined by dynamic light scattering detection and transmission electron microscopy. Anti-HIV-1 activity was assessed by HIV-1 Env-mediated cell-cell fusion and infection by laboratory-adapted, primary, and resistant HIV-1 isolates, respectively. The in-vitro release of 14f was investigated using the equilibrium dialysis method, and the pharmacokinetic study of T1144-NP-14f was performed on Sprague-Dawley rats.

RESULTS: T1144-NP-14f displayed a spherical shape under transmission electron microscopy observation and had a size of 117 ± 19 nm. T1144-NP-14f exhibited the strongest antiviral activity against a broad spectrum of HIV-1 strains, including NNRTI-, T1144-, or T20-resistant isolates, respectively. Both in-vitro release and in-vivo pharmacokinetic profile showed that T1144-NP-14f exhibited a sustained controlled release behavior.

CONCLUSION: Our results demonstrated that the combination of entry inhibitor with NNRTI encapsulated in nanoparticles (T1144-NP-14f) was highly effective in inhibiting HIV-1 infection. This new cocktail-like drug delivery platform could serve as an effective anti-HIV-1 regimen by taking advantage of the extrinsic and intrinsic antiviral activity of individual drugs.

Health Topics: